Nuclear quantum effects on the nonadiabatic decay mechanism of an excited hydrated electron.
نویسندگان
چکیده
We present a kinetic analysis of the nonadiabatic decay mechanism of an excited state hydrated electron to the ground state. The theoretical treatment is based on a quantized, gap dependent golden rule rate constant formula which describes the nonadiabatic transition rate between two quantum states. The rate formula is expressed in terms of quantum time correlation functions of the energy gap and of the nonadiabatic coupling. These gap dependent quantities are evaluated from three different sets of mixed quantum-classical molecular dynamics simulations of a hydrated electron equilibrated (a) in its ground state, (b) in its first excited state, and (c) on a hypothetical mixed potential energy surface which is the average of the ground and the first excited electronic states. The quantized, gap dependent rate results are applied in a phenomenological kinetic equation which provides the survival probability function of the excited state electron. Although the lifetime of the equilibrated excited state electron is computed to be very short (well under 100 fs), the survival probability function for the nonequilibrium process in pump-probe experiments yields an effective excited state lifetime of around 300 fs, a value that is consistent with the findings of several experimental groups and previous theoretical estimates.
منابع مشابه
Time-Resolved Photoelectron Spectroscopy of the Hydrated Electron: Comparing Cavity and Noncavity Models to Experiment.
We use nonadiabatic mixed quantum/classical molecular dynamics to simulate recent time-resolved photoelectron spectroscopy (TRPES) experiments on the hydrated electron, and compare the results for both a cavity and a noncavity simulation model to experiment. We find that cavity-model hydrated electrons show an "adiabatic" relaxation mechanism, with ground-state cooling that is fast on the time ...
متن کاملExploring the role of decoherence in condensed-phase nonadiabatic dynamics: a comparison of different mixed quantum/classical simulation algorithms for the excited hydrated electron.
Mixed quantum/classical (MQC) molecular dynamics simulation has become the method of choice for simulating the dynamics of quantum mechanical objects that interact with condensed-phase systems. There are many MQC algorithms available, however, and in cases where nonadiabatic coupling is important, different algorithms may lead to different results. Thus, it has been difficult to reach definitiv...
متن کاملHydrated electron dynamics: from clusters to bulk.
The electronic relaxation dynamics of size-selected (H2O)n-/(D2O)n[25 </= n </= 50] clusters have been studied with time-resolved photoelectron imaging. The excess electron (ec-) was excited through the ec-(p)<--ec-(s) transition with an ultrafast laser pulse, with subsequent evolution of the excited state monitored with photodetachment and photoelectron imaging. All clusters exhibited p-state ...
متن کاملQuantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations
In this paper, we explore in detail the way in which quantum decoherence is treated in different mixed quantum-classical molecular dynamics algorithms. The quantum decoherence time proves to be a key ingredient in the production of accurate nonadiabatic dynamics from computer simulations. Based on a short time expansion to a semiclassical golden rule expression due to Neria and Nitzan @J. Chem....
متن کاملQuantization of electromagnetic fields in the presence of a spherical semiconductor quantum dot and spontaneous decay of an excited atom doped in this nanostructure
In this paper we consider electromagnetic field quantization in the presence of a dispersive and absorbing semiconductor quantum dot. By using macroscopic approach and Green's function method, quantization of electromagnetic field is investigated. Interaction of a two-level atom , which is doped in a semiconductor quantum dot, with the quantized field is considered and its spontaneous emission ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 127 17 شماره
صفحات -
تاریخ انتشار 2007